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An agent-based model of triple-negative
breast cancer: the interplay between
chemokine receptor CCR5 expression,
cancer stem cells, and hypoxia
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Abstract

Background: Triple-negative breast cancer lacks estrogen, progesterone, and HER2 receptors and is thus not possible to
treat with targeted therapies for these receptors. Therefore, a greater understanding of triple-negative breast cancer is
necessary for the treatment of this cancer type. In previous work from our laboratory, we found that chemokine
ligand-receptor CCL5-CCR5 axis is important for the metastasis of human triple-negative breast cancer cell MDA-MB-231
to the lymph nodes and lungs, in a mouse xenograft model. We collected relevant experimental data from
our and other laboratories for numbers of cancer stem cells, numbers of CCR5+ cells, and cell migration rates
for different breast cancer cell lines and different experimental conditions.

Results: Using these experimental data we developed an in silico agent-based model of triple-negative breast
cancer that considers surface receptor CCR5-high and CCR5-low cells and breast cancer stem cells, to predict
the tumor growth rate and spatio-temporal distribution of cells in primary tumors. We find that high cancer
stem cell percentages greatly increase tumor growth. We find that anti-stem cell treatment decreases tumor
growth but may not lead to dormancy unless all stem cells get eliminated. We further find that hypoxia increases overall
tumor growth and treatment with a CCR5 inhibitor maraviroc slightly decreases overall tumor growth. We also
characterize 3D shapes of solid and invasive tumors using several shape metrics.

Conclusions: Breast cancer stem cells and CCR5+ cells affect the overall growth and morphology of breast tumors. In
silico drug treatments demonstrate limited efficacy of incomplete inhibition of cancer stem cells after which tumor
growth recurs, and CCR5 inhibition causes only a slight reduction in tumor growth.
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Background
Breast cancer is a group of diseases that remain the most
common malignancy afflicting women worldwide. Often
targeted therapies focus on three main cellular receptors:
estrogen, progesterone, and human epidermal growth
factor receptor 2 (HER2) receptors. However, approxi-
mately 12% of all breast cancers lack these three targets
[1]. Known as triple-negative breast cancer (TNBC) this
subset is aggressive, metastatic, and difficult to treat. Lee

and colleagues developed an accelerated metastasis xeno-
graft model that increased spontaneous metastasis of
TNBC primary tumor to the lungs [2]. They found that
TNBC tumors secrete chemokines that increase metasta-
sis to the lungs and from these experiments they identified
several potential targets for triple-negative breast cancer
[3–5]. Specifically, they found that there is crosstalk
between the primary tumor and the lymphatic endothelial
cells in the primary tumor site, the lymph nodes, and
lungs. TNBC cells secrete interleukin 6 (IL6) that becomes
systemic and ‘educates’ lymphatic cells at the primary and
metastatic sites. The ‘educated’ lymphatic cells then
increase production of C-C chemokine ligand 5 (CCL5)
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which increases pro-migratory signaling in the breast
cancer cells through their CCR5 receptor. Other research
has shown that mesenchymal stem cells secrete CCL5
promoting cancer cell motility, invasion, and metastasis
[6]. Importantly, it has been shown that treatment with
maraviroc, a CCR5 inhibitor approved by the FDA for
HIV indication, reduced metastasis in lymph nodes and
lungs [3, 7]. Maraviroc was also shown to reduce bone
metastases from prostate cancer in animal models [8].
Since CCR5 is an important receptor for TNBC prolifera-
tion, migration, and metastasis, we wanted to understand
the distribution of CCR5 in triple-negative cell lines and
then use this information in computational modeling to
predict how these factors affect tumor growth.
Cancer stem cells have been found in many types of

cancer [9] including breast [10], colorectal [11], neuro-
blastoma [12], and lung [13]. They have been associated
with therapeutic resistance in breast cancer [14] and may
lead to recurrence [15]. The most common markers for
breast cancer stem cells are CD44, CD24 and ALDH1
[16]. Specifically, breast cancer stem cells have been asso-
ciated with TNBC [17]. In estrogen receptor positive
MCF-7 cell lines, CCL5 could increase the number of can-
cer stem cells in the tumor [18]. Thus, we wanted to
understand the contributions of breast cancer stem cells
in triple-negative breast cancer cell lines.
Computational modeling is a useful tool for studying

cancer [19] and predicting tumor response to therapies
[20, 21], for reviews see [22, 23]; more specifically these
methods can also be useful for understanding breast
cancer, see review [24]. Early works investigating breast
cancer using computational modeling include investigat-
ing the role of hypoxia and pressure in tumor necrosis
[25], formation of pre-invasive tumor architectures [26],
conditions leading to the disruption of normal breast
acini formation [27, 28], patient calibrated breast cancer
prediction [29], and predicting drug response [30]. More
recently, computational models have been used to study
ductal carcinoma in situ (DCIS) progression into inva-
sive cancer [31], mechanical stress in breast cancer [32],
interactions with the tumor microenvironment [33], and
calcifications in the breast [34] . We have used agent-
based models to investigate DCIS progression [35], avas-
cular tumor growth [36], and tumor angiogenesis [37].
We now extend these approaches to understand the role
of receptor heterogeneity in triple-negative breast cancer.
Cancer stem cells have also been the topic of a large

number of computational models [38]. A series of models
by Enderling and colleagues have investigated cancer stem
cell dynamics in relation to radiotherapy resistance [39],
directed migration [40], immunity [41], tumor dormancy
[42], and senescence [43]. One interesting finding was that
cell death could actually accelerate tumor growth due to
the fact that it left space for stem cells to proliferate [44].

In particular, the inclusion of cancer stem cells in models
were demonstrated to more accurately represent invasive
behavior than those that only included non-stem cells
[45]. Michor and colleagues have used computational
models to study stem cell dynamics in pancreatic cancer
[46], glioblastoma [47], and colorectal cancer [48]. Others
have focused on cancer stem cells’ ability to evade the im-
mune system [49]. In the present study, we measure the
fraction of cancer stem cells in a TNBC cell line and also
assemble relevant data from other researchers; we then
examine how these numbers affect tumor growth using
computational modeling.
Tumor heterogeneity is an important aspect of breast

cancer growth and has been the subject of many reviews
[50–52]. Breast cancer heterogeneity is considered a major
contributor to the difficulty in eradicating the disease
including drug resistance [53–55]. In this paper, we exam-
ine receptor heterogeneity in triple-negative human breast
cancer cells lines. The numbers of CCR5 cell surface
receptors and molecular markers governing stemness were
assembled from our and other laboratories. We then build
an agent-based (rule-based) model of tumor growth
for triple-negative breast cancer cells. We compare the
growth rates and tumor morphology under different
conditions, such as different stem cell and CCR5+ cell
fractions, as well as drug treatment and hypoxia.

Methods
In silico agent-based model
The flow chart of the model is shown in Fig. 1. We initi-
ated each simulation with 100 triple-negative breast
cancer cells; the distributions of CCR5+ and stem cells
matched those found in flow cytometry in triple-negative
breast cancer cell lines. The initial 100 cells were placed in
a cubic grid 100x100x80 voxels, each voxel 20x20x20 μm,
maximum of one cell per voxel. The MDA-MB-231 cell
diameter has been measured to be approximately 20
microns [56]. We assemble the data from the literature on
percentages of CCR5+ cells in several breast cancer cell
lines; they range from 1% to 14% under different treat-
ments, including our data presented in the Additional file
1, Table 1. We have also found the percentages of cancer
stems cells in different breast cancer cell lines range from
less than 1% to 34%, including our data presented in the
Additional file 1, Table 2. All simulations were run for at
least 8 different times and averaged.
In the initial simulations with MDA-MB-231 (in some

instances referred to as MB231 for brevity) tumors, we
used CCR5+ percentages as 6% and cancer stem cell
percentages as 20% based on our experimental results.
We then vary these numbers in the sensitivity analysis.
For MB231 cells, we placed nineteen CCR5- stem cells,
one CCR5+ stem cell, five CCR5+ progenitor cells, and
seventy-five CCR5- progenitor cells on the grid. Then
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the simulation ran through all the cells randomly. First,
the neighboring positions (each voxel has 26 neighbors
along x,y,z axes and diagonally, also known as the
Moore neighborhood) of each cell were checked to de-
termine whether there was a free space, if not the cell
became quiescent. Each cell has a CCR5 receptor level
that determines its migration speed. If a cell was CCR5
+, it was set to migrate faster than a CCR5- cell. Then it
was determined whether the cell could proliferate; if the
cell was a progenitor cell it must divide symmetrically
into two progenitor cells, otherwise the stem cell could
divide symmetrically into two stem cells or asymmetric-
ally into a stem cell and a progenitor cell. If a progenitor

cell had reached its division limit the cell became senes-
cent. With each iteration a senescent cell had a 10%
chance of dying. Once a cell dies, the voxel it occupied
becomes available for other cells to proliferate or
migrate into. The simulations run for 1080 days or until
the tumor reaches 500,000 cells.

Quiescence
We randomly selected each cell and checked whether all
of its neighboring spaces were occupied. If so, the cell
became quiescent and was no longer able to proliferate or
migrate. If one of the neighboring spaces became unoccu-
pied the cell reverted back to its proliferative state.

Table 1 Percentages of CCR5+ Cells

CCR5+ percent Cell Line Conditions Reference

6.9% Basal CCR5 numbers [7]

9% MDA-MB-231 CCL5 responsive cells "

3% MDA-MB-231 + maraviroc " "

11% MDA-MB-231 " "

1% MDA-MB-231 + vicriviroc " "

13% HS578T " "

5% HS578T + maraviroc " "

14% HS578T " "

5% HS578T + vicriviroc " "

5–7% SUM149 CCR5 numbers [82]

2–6% MDA-MB-231 CCR5 numbers Our data

Fig. 1 Flowchart of the Agent-Based Model. The initial 100 cells are set up based on the flow cytometry results for the cell line MDA-MB-231 (MB231).
These initial 100 cells were placed in a cubic grid 100x100x80 voxels, each voxel 20x20x20 microns, one cell per voxel. The cells become quiescent if
they have no adjacent space. The cells migrate based on their CCR5 expression levels. Stem cells can divide symmetrically or asymmetrically, whereas
progenitor cells divide only symmetrically. If a progenitor cell has reached its division limit, it becomes senescent. Each day a senescent cell has a 10%
chance of dying
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Migration
In this model migration was governed by the cells’ CCR5
status and its microenvironment. Migration occurred as a
random walk, where a neighboring space (Moore neigh-
borhood) that was unoccupied was selected randomly and
the cell was moved to that location. Based on reported
observations of breast cancer cell migration rates, Table 3,
we assumed that as reference values, if a cell was CCR5-,
it could move one cell length per iteration (0.83 μm per
hour or 20 μm per 24 h equivalent to one iteration), the
lower end of the migration rates from in vitro studies [36,
57, 58]. CCR5+ cells ranged from moving 2 cell lengths
per iteration (1.67 μm per hour) to 20 cell lengths per
iteration (16.67 μm per hour), based on the intermediate
migration rates from in vitro studies [7, 59–61]. The high
values were used for the more migratory hypoxic cells. If a
MB231 cell was in a hypoxic microenvironment, it

became more migratory [62]. Therefore in the model, a
cell in a hypoxic zone could move three times as fast as a
non-hypoxic cell each time it migrated [62].

Proliferation
Proliferation was governed by the cell’s state, by whether
it was a stem or a progenitor cell, and by its microenvir-
onment. A stem cell could proliferate symmetrically to
produce two stem cells or asymmetrically to produce a
stem cell and a progenitor cell. A progenitor cell could
only proliferate symmetrically to produce two progenitor
cells. A stem cell had a range between 10% and 40%
probability to proliferate each day and a symmetric
division rate of 5% as done in previous models [36]. We
assumed that as reference values a stem cell had a 20%
probability of proliferating each day and a progenitor cell
had a 50% probability of proliferating each day under
normoxic conditions (36). Under hypoxic conditions the
rates of proliferation were cut in half [62].
A cell could only proliferate if it had free adjacent

space. Thus, the cell checked whether any spaces
within the surrounding 26 grid spaces were unoccu-
pied and chose a random free space to be the pos-
ition of the new cell. A progenitor cell also checked
whether it had reached its division limit before prolif-
erating. If it had, it became senescent. A stem cell or
progenitor cell had a 5% chance of producing a new
CCR5+ cell each time it symmetrically proliferates.
Once the cell had proliferated, its cycle number was
increased by one and the new cell was assigned the
same cycle number as its parent. The new cell was
then placed on the grid.

Senescence
Stem cells could proliferate for the entire span of the
simulation whereas progenitor cells could only prolifer-
ate 12 times before they became senescent, as done in
previous models [36]. Once they were senescent they
could no longer proliferate. Each day a senescent cell
had a 10% probability of dying. Once a cell dies it is
removed from the simulation.

In silico anti-stem cell treatment
Several drugs have been reported to selectively target
breast cancer stem cells, such as salinomycin [10]. We
assumed in the model that an anti-cancer stem cell drug
would kill a percentage of cancer stem cells. We admin-
ister the drug in silico after day 150. We apply the drug,
with specific stem cell death rates between 50% to 90%
efficacy, every 2 weeks for 98 days. We then track the
growth of the tumor after treatment.

Table 2 Percentages of cancer stem cells

Stem cell % Cell line Conditions Reference

20% SUM147 control [83]

10% SUM147 treatment [83]

1–15% MDA-MB-231 [84]

1% MDA-MB-231 ALDH1 [85]

12% MDA-MB-231 Paclitaxel "

1–13% SUM159 with/− Paclitaxel "

6–24% SUM149 " [86]

8–34% SUM159 " "

0.2%–12% tumors ALDH1 [87]

3.10% MDA-MB-231 [88]

2.70% MDA-MB-435 "

~0.5% SUM225 CD44+/CD24−/ESA+ [89]

~2.5% SUM149 CD44+/CD24−/ESA+ "

~1.75% SUM159 CD44+/CD24−/ESA+ "

~2.5% SUM1315 CD44+/CD24−/ESA+ "

~2% MDA-MB-231 CD44+/CD24−/ESA+ "

9–20% MDA-MB-231 CD44+/CD24 Our data

Table 3 MB231 migration rates

MB231 Migration rate Substrate Conditions Reference

0–40 μ/hr GelMA hydrogels 2D [57]

0.1–4 μ/hr Matrigel 3D [58]

12–48 μ/hr Collagen 2D [60]

8–18 μ/hr - channel [59]

38 μ/hr Fibronectin 2D [90]

7 μ/hr Collagen 3D [91]

3–9 μ/hr Collagen 3D [92]
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In silico maraviroc treatment
Maraviroc is an FDA approved drug for HIV, a C-C
chemokine receptor 5 (CCR5) inhibitor [63]. It has been
shown to reduce metastasis to the lungs in a MB231 xeno-
graft model in nude mice [3]. We assumed that maraviroc
was able to reach all cells and was effective at shutting
down the CCR5 enhanced migration. The therapeutic was
applied throughout the entire simulation, which is not
entirely realistic but would represent the most ideal case.
Therefore, CCR5+ cells were considered inhibited and
behaved as CCR5- cells, such that they could only move
0.83 μm or one cell length every day in the presence of
maraviroc.

In silico hypoxia
We assumed the vasculature was placed along the y-axis,
assuming that this is the location of the normal tissue and
the tissue was well oxygenated. Any cell greater than a
distance of 200 μm away from the vessels became hypoxic
[64]. Experimentally, proliferation assays have shown that
in vitro MB231 cells are half as proliferative under hypoxic
conditions [62]. Migration assays have shown that in vitro
hypoxic MB231 cells were also around 3 times as
migratory as normoxic cells [62]. Thus, a cell would
migrate three times as much in a hypoxic region than
in a normoxic one. Specifically, a cell would search for
an open space and move into this space and then it
would search for a new open space and move. This ran-
dom search would happen three times and is prevented
from moving back to its original position. The numbers
of CCR5+ cells increase under hypoxia [62] and we
modeled the number of CCR5+ cells from MB231 cells
as 25% based on the ranges from the literature [62].
Thus, a progenitor cell in a hypoxic region would
produce a CCR5+ cell 25% of the time it proliferated,
on average. We perform simulations to see how hyp-
oxia affects the overall growth of the tumors.

Model implementation
The model proceeds in a stepwise fashion, in which the
decisions made each day are based on the conditions
and environment of the previous day. Each cell is con-
fined to a single grid space (voxel) in a cellular automata
(on-lattice) system and each cell is an automatous agent
that makes decisions and performs actions based on its
intrinsic parameters and its microenvironment in an
agent-based system. The external boundary conditions
of the grid are static, such that no cell can leave the grid.
Once a cell hits a boundary it can only move in a direc-
tion within the grid space. The grid size is 4x4x4 mm
with each cell having a diameter of 20 μm. The default
number of initial stem CCR5-, stem CCR5+, progenitor
CCR5+, and progenitor CCR5- cells are 19, 1, 6, and 74

respectively. The model was implemented in Matlab
(MathWorks, Natick, MA).

Shape metrics
We calculated several metrics related to the 3D shape of
the tumors: chord ratio, a variation of circularity [53],
chord length [54], moment of inertia [53, 54], and fractal
dimension [55, 65–67]. The chord ratio metric is calcu-
lated by the average dc/rs, where rs is the radius of a
sphere with the same volume as the tumor and dc is the
Euclidean distance from each of the cells on the periph-
ery of the tumor and the tumor centroid. The chord
length is the average radial distance/ the maximum
radial distance, average dc/max(dc). The moment of inertia
is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

i¼1

N
zi−μð Þ2

� �

s

where zi are values of the radial distance function, N are
the cells on the perimeter of the tumor, and μ is the
mean radial distance. The moment of inertia is normal-
ized by the mean radial distance. For both the chord
ratio and moment of inertia, the larger the number
the more finger-like the morphology. For the chord
length, the smaller the number the more finger-like
the morphology.

Results
In silico CCR5+ and stem cell percentage parameter space
Triple-negative breast cancer cell lines were found to have
varying CCR5+ percentages between 1 and 15% (Table 1)
and varying cancer stem cell percentages between 0 and
34% (Table 2). Therefore, to reflect the different experi-
mental measurements and explore the entire ranges of
these parameters reported by different researchers, we
varied CCR5+ percentages between 3 and 13% and the
stem cell percentages in silico between 1 and 34%. We find
that at very low stem cell numbers the tumors initially
grow but then shrink until there is just one stem cell left,
Fig. 2. The percentage of stem cells has more effect on the
total population but for intermediate percentages of can-
cer stem cells the CCR5+ percentage has more of an effect
on the tumor growth, Fig. 2.
We show the parameter space of tumors at day 100

with varying cancer stem cell and CCR5+ percentages,
Fig. 3a. The CCR5+ percentages range between 3% and
13%. We show the stem cell percentages between 2%
and 34% because for 1% there is only one cell. At high
stem cell percentages, the tumors grow very quickly.
The higher CCR5+ percentage with high stem cell
percentages also has a more compact shape than the
lower CCR5+ percentage. At lower cancer stem cell per-
centages, the tumors grow much slower and are more
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spread out. At intermediate values of CCR5+ and cancer
stem cell percentages the tumor is of a medium size and
has a compact morphology.

At high CCR5+ percentages, the cancer stem cell percent
governs the in silico morphology
To examine the distributions of stem cells, CCR5+ cells,
and progenitor cells we analyze slices from the 3D
tumors. We show two examples with a high percentage of
CCR5+ cells (13%) and a low (2%) initial percentage of
stem cells, Fig. 3b, compared to a high initial percentage
of stem cells (34%), Fig. 3b. While CCR5+ cells (green
cells) are about the same, the number of stem cells (red
cells) are much smaller. Clearly the high percentage of
initial stem cells results in a more compact tumor,
whereas a low percentage of initial stem cells results in a
disperse tumor made of several tumor “self-metastases.”
Thus, while having smaller stem cell percentages results
in slower growing tumors, the tumors that result may be
harder to excise completely.

In silico anti-stem cell treatment decreases tumor size for
MDA-MB-231 cells
The previous simulations have examined the ranges of
CCR5+ and cancer stem cells, for examining response to
therapeutics we modeled MB231 cells with 6% CCR5+
cells and 20% stem cells based on our and others experi-
mental results, see Tables 1 and 2. Several drugs are
reported to selectively target breast cancer stem cells, such
as salinomycin [10]. We treated MB231 tumors in silico
starting at day 150 with multiple doses of a drug that
selectively targets and kills stem cells and assumed that it
killed between 50%–90% of cancer stem cells, Fig. 4a,b.
We investigate multiple doses of the same stem cell killing
drug starting at day 150 and administering it every two
weeks until day 248. Under multiple doses with 75% or
90% efficacy the stem cells eventually die out and the
tumors slowly die over 750 days, Fig. 4a,b. Once all the

progenitor cells have reached their division limit they
quickly die off. With only 50% efficacy, in some cases all
the stem cells die off and in others some remain. If any
stem cells remain, the stem cells eventually grow in num-
bers past the number they were at when they were origin-
ally killed off, Fig. 4b. In all three conditions, the tumors
survive for hundreds of days even though they are dying
off, Fig. 4a, thus even effective stem cell treatments will
not quickly eliminate the tumors. We find that one dose
killing 50–90% of stem cells merely slows down the
growth of the tumor, data not shown. In one particular
simulation, eliminating 90% of cancer stem cells caused
the number of stem cells to drop to one and the tumor to
remain dormant for some time but the number of
stem cells eventually starts increasing again, data not
shown. These results indicate that completely elimin-
ating stem cells is necessary to eventually kill off the
tumor and even if the treatment is effective at elimin-
ating all stem cells, the regression of the tumor may
be very slow.

In silico maraviroc treatment slightly decreases tumor
growth for MDA-MB-231 cells
Maraviroc is an FDA-approved CCR5 inhibitor. We
modeled maraviroc treatment by decreasing the migra-
tion rate of CCR5+ cells to be the same as CCR5- cells.
Since the growth curves of the CCR5+ cells are more
migratory, we hypothesized that maraviroc treatment
might decrease the overall growth of the tumor due to
an escape from spatial inhibition. We performed simula-
tions of MB231 cells, Fig. 4c,d, under control and in
silico maraviroc treatment conditions. We found that
maraviroc treatment slows the growth of the MB231
tumors. We find that at day 300, which occurs after the
initial growth phase but before the simulations have
ended, the maraviroc treated MB231 tumors had fewer
cells than control. The simulations also show that the
day the tumor reaches 500,000 cells is somewhat higher

Fig. 2 Changes in the Initial Percentages of Cancer Stem Cells and CCR5+ Cells. We varied the initial cancer stem cell percentages from 1% to 34% and
the initial CCR5+ percentages from 3% to 13%. We show the mean cell data over time (a), and the mean stem data over time (b). The percentages of
cancer stem cells have a greater effect than the differences in CCR5+ cells
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for maraviroc treated tumors than control, see below.
All the tumors exhibit an exponential growth curve with
an R2 value of 0.99.

Hypoxia increases tumor growth for MDA-MB-231 tumors
We included the development of hypoxic regions within
the tumor and simulated the growth of MB231 tumors,

Fig. 4c,d. The growth of MB231 tumors is faster under
hypoxic conditions. We also find that at day 300, the
hypoxic MB231 tumors had significantly more cells than
control. The simulations also show that the length of
time for the tumor to reach 500,000 cells is not signifi-
cantly different for hypoxic tumors than for control
tumors, see below.

Fig. 3 3D Simulation Plots of the MB231 with Different Stem Cell and CCR5+ Populations. a Lower stem cell populations and higher CCR5+ percentages
lead to more fingering morphologies. The plots are at day 100. b The top tumor is a cross section of a tumor for simulation with 2% stem cells and 13%
CCR5+ cells, with an inset. The bottom tumor is a cross section of a tumor for simulation with 34% stem cells and 13% CCR5+ cells, with an inset. With
lower stem cell initial percentages, the tumor is made up of clusters of cells whereas the higher stem cell percentages result in a single larger
tumor. Progenitor cells are shown in blue, CCR5+ cells in green, stem cells in red and both CCR5+ and stem cells in yellow

Norton et al. BMC Systems Biology  (2017) 11:68 Page 7 of 15



In silico MDA-MB-231 tumors have solid and invasive 3D
morphologies
We find that even though the same initial parameters are
used to simulate MB231 tumor growth, their ultimate
morphologies vary between a solid, more compact tumor
and an invasive, fingering tumor. An example 3D image of
a solid MB231 morphology is shown in Fig. 5a. This
tumor has a chord ratio metric of 1.18 and a moment of
inertia of 0.23. In contrast, the MB231 tumors shown in
Fig. 5b have finger-like projections, which is characteristic

of invasive tumors. These fingers are due to isolated stem
cells that are surrounded by progenitor cells which form
due to migration. This tumor has a chord ratio metric of
1.36 and moment of inertia 0.35. We evaluate the differ-
ences in metrics under different conditions below.

Stem cell proliferation rate has a greater effect on tumor
growth than migration rate
In order to determine the effects of stem cell proliferation
and CCR5+ cell migration on the overall tumor growth,

Fig. 4 Simulated tumor growth of MB231 cells under different conditions. a We investigate three doses of a drug treatment targeting cancer stem cells
starting at day 150 with varying efficacy at killing cancer stem cells between 50%–90%. Plot of the mean total cell numbers over time
after multiple doses of treatment. b Plot of the mean stem cell numbers over time after multiple doses of a drug treatment targeting
cancer stem cells. c A semi-log plot comparison of MB231 primary tumors under control, hypoxic, and maraviroc conditions. d A plot of
MB231 primary tumor under control, hypoxic, and maraviroc conditions

Fig. 5 3D Simulation Plots of the MB231 Solid and Invasive Morphologies. a An example of an MB231 tumor with a solid morphology. b An example
of a tumor with an invasive morphology. There are finger-like projections coming out of the tumor making it a more invasive morphology
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we performed simulations varying the stem cell prolifera-
tion rate between 0.1 and 0.4 per day and the CCR5+ mi-
gration rate between 0.8 and 5.8 μm per hour, in
accordance with experimental data, see Tables 1-3. The
mean cell numbers over time for each parameter condi-
tion are shown in Fig. 6a, and the mean numbers of stem
cells over time in Fig. 6b. We do not show mean CCR5+
data over time because they follow the same trends as
mean cell data. Low proliferation rates (0.1 per day) (PR)
were associated with much slower tumor growth than
higher proliferation rates. In contrast, changes in migra-
tion rates (MR) had less effect on tumor growth. We find
similar trends for mean stem cell growth over time,
Fig. 6b. Low proliferation rates slow stem cell growth
over time and variation in migration rates have little
effect.

3D morphology parameter space
We display the 3D morphologies of the tumors under
different proliferation rates (PR) and migration rates
(MR) at 300 days, Fig. 7. Migration appears to have
more influence on the morphology and proliferation
affects the numbers of cells. Tumors with higher MR have
more finger-like projections, invasive bumps growing off
of the tumor, than tumors with lower MR rates. Higher
PR increases the numbers of cells and also contributes to
a more solid-like morphology. The most finger-like tumor
had low PR and high MR. The solid type morphologies
are predicted to be less invasive, whereas the finger-like
projections are predicted to be more invasive since they
resemble invasive fronts seen in cancers.
To get a quantitative assessment of the effects of pro-

liferation and migration we evaluated three shape met-
rics (chord length, moment of inertia, and chord ratio),
and we display the metrics as contour plots for a range
of PR and MR values, Fig. 8a. The lower the value of the
chord length, the more finger-like the morphology. The
higher the value of the chord ratio and moment of iner-
tia the less compact the tumor shape is and thus they

have more fingers and/or more prominent fingers. From
these contour plots, it is clear that the most finger-like
morphology is at high levels of migration and low levels
of proliferation, whereas the tumor is more spherical at
low migration and high proliferation rates.

Contribution of maraviroc treatment and hypoxia to the
invasive morphology of the tumor
We examined four metrics: moment of inertia, day at
which the tumor reaches 500,000 cells, chord ratio, and
fractal dimension for MB231 tumors under control, mara-
viroc, and hypoxic conditions, Fig. 8b. We found that for
the maraviroc treated tumors all metrics were statistically
lower than for the normal condition for all metrics except
for days using a one-tailed t-test, indicating a more com-
pact morphology. We found that chord ratio was statisti-
cally higher for hypoxic than control conditions using a
two-tailed t-test, indicating a more finger-like morph-
ology. Also, hypoxic treated tumors took fewer days to
reach 500,000 cells than the control tumors.

Discussion
High numbers of CCR5 receptors allow for an increased
migratory behavior in tumors. We predicted that the in-
creased migration might also increase tumor growth by
opening up new space into which cells may divide. We
found that the tumor growth was slightly slower by sim-
ulated maraviroc treatment, which was assumed to
reduce the CCR5+ migration rate to normal. This result
is qualitatively consistent with the studies from our
laboratory showing that primary tumor growth was
slightly lowered by maraviroc monotherapy treatment
(but significantly inhibited by maraviroc in combination
with other agents) (K. Jin, unpublished data) and ob-
servations by Lee et al. showing that the primary
tumor was unchanged but the incidence of lung metasta-
ses was decreased [3]. We find that at lower migration
rates, the decreased tumor growth does not occur (data
not shown).

Fig. 6 Cell Growth under Different Stem Cell Proliferation and CCR5+ Migration Rates. a MB231 total cell growth under different proliferation and
migration rates (PR, 1/day; MR, μ/h). Lower stem cell proliferation rates lead to slower growth. b Mean stem cell number under different proliferation
and migration rates. Lower stem cell proliferation rates leads to fewer stem cells over time
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Stem cell proliferation and CCR5+ migration rates were
found to influence the tumor growth and morphology.
However, despite the importance of both these attributes,
the effects of proliferation were more significant. Lower
initial cancer stem cell percentages can greatly lower the
growth of the tumor. Lower stem cell proliferation rates
decreased the total number of tumor cells, the number of
CCR5+ cells, and the number of stem cells. Lower stem
cell proliferation and higher CCR5+ migration rates were
correlated with having a more finger-like morphology.
This was observed qualitatively with the 3D morphologies
and verified by the shape metrics. Each stem cell generates
a group of progenitor cells that surround it. Therefore, if
there are large amounts of stem cells these progenitor cell
groups will overlap with one another, which would lead to
a more solid-like morphology. When there are fewer stem
cells these progenitor cells can form finger-like projections
as they move away from the main tumor body. Thus, a
lower stem cell proliferation rate can lead to a more
finger-like morphology. The more migratory the cells, the
more they can form finger-like projections as well due to
a cell leaving a “trail” of cells behind them as they
migrate. This is consistent with other models that
showed that having fewer stem cells leads to a more
invasive morphology [40, 45].
This computational model focuses on heterogeneity,

specifically two relevant types of breast cancer heterogen-
eity are distributions of cancer stem cells and chemokine
cell surface receptors [68, 69]. We find that the distribu-
tion and number of stem cells greatly influences the
morphology of the tumor, with lower numbers of stem

cells leading to clusters of cells surrounding stem cells
similar to ‘self-metastases’ [40, 42]. We find that the
higher percentages of CCR5+ cells lead to more stem cell
clusters due to the fact that migration leaves space for
stem cells to migrate and proliferate. The heterogeneity of
stem cells and CCR5+ cells leads to differences in the
growth and morphology of the tumor. In other computa-
tional models, the migration rate of cells and cell turnover
were found to contribute to the increased tumor hetero-
geneity [70].
We model a targeted cancer stem cell therapy, such as

salinomycin [71], to see how effective they must be to
eliminate or stall tumor progression. Targeting cancer
stem cells has been a goal of several studies, for reviews
see [15, 72], and several cancer stem cell drugs have
been shown to significantly decrease mammosphere
formation [73]. Multiple doses of a stem cell targeted
drug that is greater than 50% effective eventually kills off
all the stem cells which leads to a gradual regression of
the tumor. We found that killing 50% of cancer stem
cells slows its progression but the tumor eventually
recovers as long as a stem cell remains. Even if all but one
stem cell is killed, tumor growth is only slowed for a time
and then it starts growing again. Thus, while killing stem
cells may seem like a therapeutic goal, these simulations
suggest that suppressing a stem cell’s symmetric division
rate might be a more effective or an alternative strategy.
These results also suggest that using other therapeutics,
such as chemotherapy, along with the cancer stem cell
targeted drug should be more effective at causing a
quicker tumor regression.

Fig. 7 3D Simulation Plots of the MB231 Tumors under Different Migration and Proliferation Rates. Lower proliferation rates (PR) and higher migration
rates (MR) lead to more fingering morphologies
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Hypoxia was found to decrease proliferation and increase
migration of cancer cells in vitro. Hypoxic tumors grew
faster, possibly due to the free space left by migratory cells.
Consistent with this hypothesis, we found that tumors with
slower migration rates could actually decrease the tumor
growth under hypoxic conditions, probably due to the
decrease in proliferation (data not shown). Thus redu-
cing migration rate may be an effective anti-tumor
therapy. While the proliferation rate under hypoxia
may be decreased, the ability for stem cells to symmet-
rically divide may be increased due to the free space left
by tumor cell migration. Hypoxia has also been shown
to reduce proliferation and increase migration in in
vivo tumors [74]. Hypoxia causes cells to overexpress
hypoxia-inducible factor 1 alpha (HIF1α) and vascular
endothelial cell growth factor (VEGF) [75] which is

associated with unfavorable prognosis in breast cancer
patients [76, 77]. These factors contribute to the angio-
genic switch by recruiting new vasculature to the tumor
[78]. Thus, while hypoxia before the angiogenic switch
slows proliferation rates, the overexpression of HIF1α
and VEGF and the increase in migration leads to overall
increases in tumor growth. Therefore, it would be import-
ant to combine angiogenesis and tumor growth models in
breast cancer in future computational models.
Hypoxia was found to increase the invasive morph-

ology of the tumors. This is most likely due to the fact
that these tumors are less proliferative and more migra-
tory, which was found to be more finger-like in the in
silico parameter space. Cells are able to migrate more
frequently, causing fingering morphologies, but without
proliferating to create a solid morphology. This leads to

Fig. 8 Comparison of Shape Metrics of Tumors. a Contour plot of the chord length with increasing migration and proliferation rates. Contour plot of the
moment of inertia with increasing migration and proliferation rates. Contour plot of the chord ratio metric with increasing migration and proliferation
rates. All metrics show that the fingering morphology increases with increasing migration and decreasing proliferation. b The shape metrics indicates the
invasiveness of the tumor morphology. We evaluate moment of inertia, days until end of simulation (500,000 cells), chord metric and fractal dimension.
MB231 cells under maraviroc (Mara) treatment have statistically significant lower shape metric values than the parent cell lines (Cnt). MB231 cells under
hypoxic conditions (Hyp) have statistically significant higher chord metrics than the parent cell lines (Cnt). Simulated maraviroc treated tumors all have
statistically significant less invasive morphologies than their parent lines
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hypoxic cells causing a more spread-out morphology
and these tumors are more likely to be invasive and pos-
sibly more metastatic. This is consistent with many stud-
ies associating in vitro/in vivo hypoxia with breast
cancer invasiveness [79] and metastasis [80, 81]. On the
other hand, maraviroc treatment was found to decrease
the invasive morphology of the in silico tumors. This is
due to the reduction in migration leading to fewer
migrating cells and fewer fingers.
Lastly, since the morphology of the tumors is an import-

ant aspect of the invasiveness of a tumor, shape metrics
have been used to classify breast tumors from mammo-
grams [53, 54]. Therefore, to relate our simulations to
clinical results, we used several shape metrics to deter-
mine whether the tumors were more invasive or more
solid. Chord length, chord ratio, moment of inertia and
fractal dimension were all able to predict whether the
tumor was invasive or solid. Circularity and fractal dimen-
sion were used to predict benign or malignant tendencies
and were statistically significant [53]. Circularity is the
mean radial distance of the tumor boundary divided by
the standard deviation. In breast cancer patients, circular-
ity of malignant breast tumors were 3.62 on average,
whereas benign tumors had an average value of 5.57 [53].
The fractal dimensions of the boundary of breast tumors
in cross section were 1.25 for benign and 1.6 for malignant
tumors [67], for brain tumors the fractal dimensions of
the tumor surface were between 2 and 3 depending on the
image processing method [65]. When applied to our simu-
lated tumors, these metrics yielded circularity values
between 2.6 and 4.0 and fractal dimension values be-
tween 2.3 and 2.36. According to this, all of the tumors
would be predicted to be malignant, which is consistent
with MB231 tumors being metastatic.
There are several limitations of this model. First of all,

we examine tumor growth before the angiogenic switch.
This allows us to understand the progression of early
tumor but it will need to be expanded upon to under-
stand the continued growth of the tumor, tumor vascu-
lature, and metastasis. Another limitation of the model
is that it does not take into account the complex aniso-
tropic structure of the host mammary tissue with its
branching network of mammary ducts; this background
could have an effect on the shape of the growing breast
tumor. This issue deserves an investigation in future
models. Another limitation is that the model uses
triple-negative breast cancer cell lines for parameter
fittings. While this allows direct comparison between
the more and less metastatic cell lines, it may not be
generalizable to other types of breast cancer or solid
tumors. This model focuses on primary tumor growth
but in future directions we will examine breast cancer
metastasis to other organs such as the lung, lymph
nodes and bone.

Conclusions
In conclusion, we have used experimental and computa-
tional techniques to examine the effects of migration of
CCR5+ cancer cells, stem cell proliferation, and hypoxia
on the growth and progression of triple-negative breast
tumors. The major conclusions of our computational
model are that 1) stem cell percentages and proliferation
rates have a greater effect on tumor growth than CCR5+
percentages and migration rates, 2) treatments that do not
eliminate all stem cells cause tumor reduction but the
tumors eventually relapse, 3) maraviroc treatment slightly
decreases tumor size, but the effect is not as pronounced
as the effects of hypoxia or anti-stem cell treatment, 4)
hypoxia accelerates tumor growth, 5) 3D finger-like tumor
morphologies occur at higher migration and lower prolif-
eration rates. We show that there is an important inter-
play between cancer stem cells, cancer CCR5+ cells,
hypoxia, and therapies that can affect tumor growth and
invasion. The model provides a framework for analyzing
the effects of tumor cellular heterogeneity and pharmaco-
dynamics; building on this development future studies
should include other cell types in the tumor microenvir-
onment, e.g., tumor-associated fibroblasts, and immune
cells such as macrophages and T cells, as well as expand
on the pharmaceutical agents that interfere with different
cellular processes.
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